Emission Sources and Formation of Particulate Organic Matter (POM)

Joost de Gouw

NOAA Earth System Research Laboratory and

Cooperative Institute for Research in Environmental Sciences
University of Colorado, Boulder, Colorado

A summary of observations from 1 airborne and 2 ship-based measurement campaigns in New England

Sources of Particulate Organic Matter (POM)

Direct Emissions					
Biomass burning	43.7 Tg y ^{-1 a}				
Fossil Fuel combustion			3.2 Tg y ^{-1 a}		
Secondary Formation					
Monoterpenes	130 Tg y ^{-1 b}	14% yield ^c	18 Tg y ⁻¹		
Isoprene	500 Tg y ^{-1 b}	0.9-3.0% ^d	4-13 Tg y ⁻¹		
Toluene	6.7 Tg y ^{-1 a}	11% ^c	0.7 Tg y ⁻¹		

^a Kanakidou 2005, ^b Guenther 1995, ^c Seinfeld & Pandis 1998, ^d Kroll 2005

Bottom line: > Direct emissions > secondary formation

> Most POM contains modern carbon

Our Observations in New England

- 1. POM was associated with urban emissions
- 2. POM was mostly secondary
- 3. Formation could not be explained from known precursors

2002: AMS Middlebrook EC/OC Bates

2004: AMS, EC/OC, WSOC Quinn & Bates

2004: AMS WSOC

Middlebrook Weber 1. Mass loading of POM correlates well with urban pollutants

POM vs. Iso-Propyl Nitrate During NEAQS 2002

Iso-propyl nitrate is oxidation product from propane and other mainly anthropogenic hydrocarbons

(de Gouw, JGR 2005)

POM / WSOC vs. CO During ICARTT 2004

Ron Brown AMS data (Quinn and Bates)

WP-3D WSOC data excluding forest fire plumes (Sullivan, JGR in press)

No Obvious Correlation with Biogenic Emissions

Ron Brown AMS data from NEAQS 2002

No Obvious Correlation with Biogenic Emissions

POM correlates better with fossil-fuel related emissions ⇔inconsistent with C14 data that says carbon is modern? 2. Direct, urban emission sources of POM are relatively small on regional scales

Direct, Urban Emissions of POM

- > AMS data from NEAQS 2002
- Minor POM enhancements close to urban sources

Direct, Urban Emissions of POM

POM emissions from vehicles

 $\Delta POC/\Delta CO = 2.1 \mu g m^{-3} ppm v^{-1}$ (Kirchstetter, AE 1999)

 Δt oluene/ $\Delta CO = 4.2 \text{ ppbv ppmv}^{-1}$ (Warneke, JGR in press)

 $\Delta POM/\Delta POC = 1.78$ (de Gouw, JGR 2005)

From which follows: $\Delta POM/\Delta toluene = 0.9 \mu g m^{-3} ppbv^{-1}$

 Δ toluene = 0.6 ppbv \Rightarrow Δ POM = 0.5 μ g m⁻³

3. Mass loading of POM in urban plumes increases strongly in first 24 hours

WSOC Growth in NYC plume

WP-3D data from ICARTT

ΔWSOC/ΔCO:

8.9 µg m⁻³ ppmv⁻¹ (July 20)

23 µg m⁻³ ppmv⁻¹ (July 21)

N.B. ΔOC/ΔCO: 2.1 μg m⁻³ ppmv⁻¹ (tunnel study)

WSOC Growth in Urban Plumes

- Transport age from Flexpart or trajectories
- Photochemical age from benzene/toluene ratios

4. Increase in POM cannot be explained by removal of commonly measured VOCs

Secondary Formation from Measured VOCs

WSOC Growth in Urban Plumes

Secondary formation from measured VOCs cannot explain the observed increase in POM What Does it Mean?

Possible Explanations for the Discrepancy?

- 1. Formation from higher-mass VOCs?

 Donahue, ES&T 2006

 Only few measurements. Enough mass available?
- 2. Formation more efficient than observed in smog chambers? 20% yield for all VOCs explains data
- 3. Formation from biogenic VOCs more efficient in urban air?

 Would explain correlation with pollutants

 Would explain the C14 data

 Biogenic precursors ≠ naturally occurring POM

Similar observations:

Heald, GRL 2005 ACE-Asia
Takegawa, GRL 2006 Tokyo

Volkamer, GRL 2006 Mexico City

Sources of POM: A Revision

Direct Emissions					
Biomass burning	43.7 Tg y ⁻¹				
Fossil Fuel combustion			3.2 Tg y ⁻¹		
Secondary Formation					
Monoterpenes	130 Tg y ⁻¹	14% yield	18 Tg y ⁻¹		
Isoprene	500 Tg y ⁻¹	0.9-3.0%	4-13 Tg y ⁻¹		
Urban Emissions			21 Tg y ^{-1 a}		

^a Assuming:

- 1. A global CO source of 450 Tg y⁻¹
- 2. Secondary formation of 30 µg C m⁻³ (ppmv CO)⁻¹

Bottom line: Secondary formation from urban emissions may be much higher than previously recognized

Acknowledgements

Ann Middlebrook
Rodney Weber, Amy Sullivan, Rick Peltier
WSOC
Trish Quinn, Tim Bates
AMS, OC/EC

Carsten Warneke
Paul Goldan, Bill Kuster
GC-MS
Elliot Atlas
WAS

John Holloway, Eric Williams, Brian Lerner CO

Chuck Brock, Fred Fehsenfeld, Jim Meagher, Tom Ryerson, Michael Trainer